debian-skyfield/ci/pck00008.tpc

3382 lines
109 KiB
Plaintext

KPL/PCK
P_constants (PcK) SPICE kernel file
===========================================================================
By: Nat Bachman (NAIF) 2004 September 21
File Organization
--------------------------------------------------------
The contents of this file are as follows.
Introductory Information:
-- File Organization
-- Version description
-- Disclaimer
-- Sources
-- Explanation
-- Body numbers and names
PcK Data:
Orientation Data
----------------
-- Orientation constants for the Sun and planets.
Additional items included in this section:
- Earth north geomagnetic centered dipole values
for epochs 1945-2000
- Mars prime meridian offset "lambda_a"
-- Orientation constants for satellites
-- Orientation constants for asteroids Gaspra, Ida,
Vesta, and Eros
Radii of Bodies
---------------
-- Radii of Sun and planets
-- Radii of satellites, where available
-- Radii of asteroids Gaspra, Ida, Kleopatra, and Eros
Version description
--------------------------------------------------------
This file was created on September 21, 2004. This version
incorporates data from reference [2]: "Report of the IAU/IAG
Working Group on Cartographic Coordinates and Rotational Elements
of the Planets and Satellites: 2000." Note that the 2003
version of this report is as yet unpublished.
This file contains size, shape, and orientation data for all
objects described by the previous version of the file, plus data
for the asteroids Vesta, Kleopatra, and Eros.
Disclaimer
--------------------------------------------------------
Applicability of Data
This constants file may not contain the parameter values that
you prefer. Note that this file may be readily modified by
you or anyone else. NAIF suggests that you inspect this file
visually before proceeding with any critical or extended
data processing.
File Modifications by Users
NAIF requests that you update the "by line" and date if you
modify this file.
Known Limitations and Caveats
In general, the orientation models given here are claimed by the
IAU/IAG Working Group Report [2] to be accurate to 0.1 degree
([2], p.85). However, NAIF notes that orientation models for
natural satellites and asteroids have in some cases changed
substantially with the availability of new observational data, so
users are urged to investigate the suitability for their
applications of the models presented here.
NAIF strongly cautions against using the earth rotation model
(from [2]) given here for work demanding high accuracy. This
model has been determined by NAIF to have an error in the prime
meridian location of magnitude at least 150 arcseconds, with a
local minimum occurring during the year 1999. Regarding
availability of better earth orientation data for use with the
SPICE system:
Earth orientation data are available from NAIF in the form of
binary earth PCK files. NAIF employs an automated process to
create these files; each time JPL's section 335 produces a new
earth orientation parameter (EOP) file, a new PCK is produced.
These PCKs cover a 12-month time span starting about nine
months prior to the current date. In these PCK files, the
following effects are accounted for in modeling the earth's
rotation:
- Precession: 1976 IAU model
- Nutation: 1980 IAU model, plus interpolated
EOP nutation corrections
- Polar motion: interpolated from EOP file
- True sidereal time:
+ UT1 - UT1R (if needed): given by analytic formula
+ TAI - UT1 (or UT1R): interpolated from EOP file
+ UT1 - GMST: given by analytic formula
+ equation of equinoxes: given by analytic formula
where
TAI = International Atomic Time
UT1 = Greenwich hour angle of computed mean sun - 12h
UT1R = Regularized UT1
GMST = Greenwich mean sidereal time
These kernels are available via anonymous ftp from the server
naif.jpl.nasa.gov
The kernels are in the path
pub/naif/generic_kernels/pck
At this time, these kernels have file names of the form
earth_000101_yymmdd_yymmdd.bpc
The second and third dates are, respectively, the file's
coverage end time and the epoch of the last datum.
These binary PCK files are very accurate (error < 0.1
microradian) for epochs preceding the epoch of the last datum.
For later epochs, the error rises to several microradians.
Binary PCK files giving accurate earth orientation back to 1972
and *low accuracy* predicted earth orientation to 2023 are also
available in the same location.
How does the rotation model used in the long term predict
binary earth PCK compare to that used in this file? Because of
the unpredictability of the earth's orientation, in particular
of its spin, it's not possible to answer with certainty.
However, we can make these observations:
- The long term predict binary PCK presumably does a better
job of predicting the orientation of the earth's equator
since the binary PCK accounts for nutation and the model
from [2] does not.
- The prime meridian error in the model from [2] amounts
to, at a minimum, about 10 seconds of rotation. It should
take years for the spin error of the binary long term
predict PCK to grow as large.
Characteristics and names of the binary kernels described here
are subject to change. Contact NAIF for details concerning
binary earth PCKs.
The SPICE Toolkit doesn't currently contain software to model the
earth's north geomagnetic centered dipole as a function of time.
As a convenience for users, the north dipole location from the
J2000 epoch was selected as a representative datum, and the
planetocentric longitude and latitude of this location have been
associated with the keywords
BODY399_N_GEOMAG_CTR_DIPOLE_LON
BODY399_N_GEOMAG_CTR_DIPOLE_LAT
Values for the earth's north geomagnetic centered dipole are
presented in comments as a discrete time series for the time range
1945-2000. For details concerning the the geomagnetic field model
from which these values were derived, including a discussion of
the model's accuracy, see [13].
The Mars prime meridian offset given by [10] is not used by
SPICE geometry software for computations involving the shape
of Mars (for example, in sub-observer point or surface intercept
computations). The value is provided for informational
purposes only.
SPICE Toolkits prior to version N0057 cannot make use of
trigonometric polynomial terms in the formulas for orientation of
the planets. The only planet for which such terms are used is
Neptune. Use of trigonometric polynomial terms for natural
satellites is and has been supported for all SPICE Toolkit
versions.
Sources
--------------------------------------------------------
The sources for the constants listed in this file are:
[1] Seidelmann, P.K., Archinal, B.A., A'Hearn, M.F.,
Cruikshank, D.P., Hilton, J.L., Keller, H.U., Oberst, J.,
Simon, J.L., Stooke, P., Tholen, D.J., and Thomas, P.C.
"Report of the IAU/IAG Working Group on Cartographic
Coordinates and Rotational Elements of the Planets and
Satellites: 2003," Unpublished.
[2] Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E.,
Bergh, C. de, Lieske, J.H., Oberst, J., Simon, J.L.,
Standish, E.M., Stooke, P., and Thomas, P.C. (2002).
"Report of the IAU/IAG Working Group on Cartographic
Coordinates and Rotational Elements of the Planets and
Satellites: 2000," Celestial Mechanics and Dynamical
Astronomy, v.82, Issue 1, pp. 83-111.
[3] Davies, M.E., Abalakin, V.K., Bursa, M., Kinoshita, H.,
Kirk, R.L., Lieske, J.H., Marov, M.Ya., Seidelmann, P.K.,
and Simon, J.-L. "Report of the IAU/IAG/COSPAR Working
Group on Cartographic Coordinates and Rotational Elements
of the Planets and Satellites: 1997," Unpublished.
[4] Davies, M.E., Abalakin, V.K., Bursa, M., Lieske, J.H.,
Morando, B., Morrison, D., Seidelmann, P.K., Sinclair,
A.T., Yallop, B., and Tjuflin, Y.S. (1996). "Report of
the IAU/IAG/COSPAR Working Group on Cartographic
Coordinates and Rotational Elements of the Planets and
Satellites: 1994," Celestial Mechanics and Dynamical
Astronomy, v.63, pp. 127-148.
[5] Davies, M.E., Abalakin, V.K., Brahic, A., Bursa, M.,
Chovitz., B.H., Lieske, J.H., Seidelmann, P.K.,
Sinclair, A.T., and Tiuflin, I.S. (1992). "Report of the
IAU/IAG/COSPAR Working Group on Cartographic Coordinates
and Rotational Elements of the Planets and Satellites:
1991," Celestial Mechanics and Dynamical Astronomy,
v.53, no.4, pp. 377-397.
[6] Davies, M.E., Abalakin, V.K., Bursa, M., Hunt, G.E.,
and Lieske, J.H. (1989). "Report of the IAU/IAG/COSPAR
Working Group on Cartographic Coordinates and Rotational
Elements of the Planets and Satellites: 1988," Celestial
Mechanics and Dynamical Astronomy, v.46, no.2, pp.
187-204.
[7] Nautical Almanac Office, United States Naval Observatory
and H.M. Nautical Almanac Office, Rutherford Appleton
Laboratory (2005). "The Astronomical Almanac for
the Year 2005," U.S. Government Printing Office,
Washington, D.C.: and The Stationary Office, London.
[8] Nautical Almanac Office, United States Naval Observatory,
H.M. Nautical Almanac Office, Royal Greenwich
Observatory, Jet Propulsion Laboratory, Bureau des
Longitudes, and The Time Service and Astronomy
Departments, United States Naval Observatory (1992).
"Explanatory Supplement to the Astronomical Almanac," P.
Kenneth Seidelmann, ed. University Science Books, 20
Edgehill Road, Mill Valley, CA 9494.
[9] Duxbury, Thomas C. (2001). "IAU/IAG 2000 Mars Cartographic
Conventions," presentation to the Mars Express Data
Archive Working Group, Dec. 14, 2001.
[10] Russell, C.T. and Luhmann, J.G. (1990). "Earth: Magnetic
Field and Magnetosphere." <http://www-ssc.igpp.ucla.
edu/personnel/russell/papers/earth_mag>. Originally
published in "Encyclopedia of Planetary Sciences," J.H.
Shirley and R.W. Fainbridge, eds. Chapman and Hall,
New York, pp 208-211.
[11] Russell, C.T. (1971). "Geophysical Coordinate
Transformations," Cosmic Electrodynamics 2 184-186.
NAIF document 181.0.
[12] ESA/ESTEC Space Environment Information System (SPENVIS)
(2003). Web page: "Dipole approximations of the
geomagnetic field." <http://www.spenvis.oma.be/spenvis/
help/background/magfield/cd.html>.
[13] International Association of Geomagnetism and Aeronomy
and International Union of Geodesy and Geophysics (2004).
Web page: "The 9th Generation International Geomagnetic
Reference Field." <http://www.ngdc.noaa.gov/
IAGA/vmod/igrf.html>.
[14] Duxbury, Thomas C. (1979). "Planetary Geodetic Control
Using Satellite Imaging," Journal of Geophysical Research,
vol. 84, no. B3. This paper is cataloged as NAIF
document 190.0.
[15] Letter from Thomas C. Duxbury to Dr. Ephraim Lazeryevich
Akim, Keldish Institute of Applied Mathematics, USSR
Academy of Sciences, Moscow, USSR. This letter is
cataloged as NAIF document number 195.0.
[16] "Placeholder" values were supplied by NAIF for some radii
of the bodies listed below:
Body NAIF ID code
---- ------------
Metis 516
Helene 612
Larissa 807
See the discussion below for further information.
Most values are from [2]. All exceptions are
commented where they occur in this file. The exceptions are:
-- Radii for the Sun are from [7].
-- The second nutation precession angle (M2) for Mars is
represented by a quadratic polynomial in the 2000
IAU report. The SPICELIB subroutine BODEUL can not
handle this term (which is extremely small), so we
truncate the polynomial to a linear one.
-- For several satellites, the 2000 IAU report either gives
a single radius value or a polar radius and a single
equatorial radius. SPICE Toolkit software that uses body
radii expects to find three radii whenever these data are
read from the kernel pool. In the cases listed below,
NAIF has used the mean radius value for all three radii.
Wherever this was done, the fact has been noted.
The affected satellites are:
Body NAIF ID code
---- ------------
Metis 516
Helene 612
Larissa 807
-- Earth north geomagnetic centered dipole values are from
[12]. The article [10] was used to check most of
these values, and the values were also re-computed from
the 9th generation IGRF [13] by Nat Bachman.
-- The Mars prime meridian offset angle is from [9].
"Old values" listed are from the SPICE P_constants file
dated April 24, 2000. Most of these values came from the
1994 IAU report [4].
Explanation
--------------------------------------------------------
The SPICE Toolkit software that uses this file is documented in
the SPICE "Required Reading" file pck.req. For a terse
description of the PCK file format, see the section below titled
"File Format." See the SPICE "Required Reading" file kernel.req
for a detailed explanation of the SPICE text kernel file format.
The files pck.req and kernel.req are included in the documentation
provided with the SPICE Toolkit.
This file, which is logically part of the SPICE P-kernel, contains
constants used to model the orientation, size and shape of the
Sun, planets, and satellites. The orientation models express the
direction of the pole and location of the prime meridian of a body
as a function of time. The size/shape models ("shape models" for
short) represent all bodies as ellipsoids, using two equatorial
radii and a polar radius. Spheroids and spheres are obtained when
two or all three radii are equal.
File Format
This file consists of a series of comment blocks and data blocks.
Comment blocks, which contain free-form descriptive or explanatory
text, are preceded by a \begintext token. Data blocks follow a
\begindata token. In order to be recognized, each token shown
here must be placed on a line by itself.
The portion of the file preceding the first data block is treated
as a comment block; it doesn't require an initial comment block
token.
This file identifies data using a series of
KEYWORD = VALUE
assignments. The left hand side of each assignment is a
"kernel variable" name; the right hand side is an associated value
or list of values. The SPICE subroutine API allows SPICE routines
and user applications to retrieve the set of values associated
with each kernel variable name.
Kernel variable names are case-sensitive and are limited to
32 characters in length.
Numeric values may be integer or floating point. String values
are normally limited to 80 characters in length; however, SPICE
provides a mechanism for identifying longer, "continued" strings.
See the SPICE routine STPOOL for details.
String values are single quoted.
When the right hand side of an assignment is a list of values,
the list items may be separated by commas or simply by blanks.
The list must be bracketed by parentheses. Example:
BODY399_RADII = ( 6378.14 6378.14 6356.75 )
Any blanks preceding or following keyword names, values and equal
sign are ignored.
Assignments may be spread over multiple lines, for example:
BODY399_RADII = ( 6378.14
6378.14
6356.75 )
This file may contain blank lines anywhere. Non-printing
characters including TAB should not be present in the file: the
presence of such characters may make the file unreadable by
SPICE software.
Time systems and reference frames
The 2000 IAU/IAG Working Group Report [1] states that, to the
accuracy of the formulas given, the time system used may be
regarded as any of TDB (Barycentric Dynamical Time), TT
(Terrestrial time, formerly called TDT), or T_eph (the independent
variable of the JPL planetary ephemerides). Reference [2], from
which most data in this report were taken, erroneously identifies
the time system as TCB (Barycentric Coordinate Time).
SPICE software treats the time system used in this file as T_eph,
but for historical reasons SPICE documentation refers to the time
system as both "ET" and "TDB." For consistency, documentation in
this version of the file retains use of the name TDB.
The origin of the time system is 2000 January 1 12:00:00 (TDB).
Throughout SPICE documentation and in this file, we use the names
"J2000 TDB" and "J2000" for this epoch. The name "J2000.0" is
equivalent.
The inertial reference frame used for the rotational elements in
this file is identified by [1] as the ICRF (International
Celestial Reference Frame). In this file, the frame is treated
as J2000. The difference between the J2000 frame and the ICRF is
on the order of tens of milliarcseconds and is well below the
accuracy level of the formulas in this file.
Orientation models
All of the orientation models use three Euler angles to describe
body orientation. To be precise, the Euler angles describe the
orientation of the coordinate axes of the "Body Equator and Prime
Meridian" system with respect to an inertial system. By default,
the inertial system is J2000 (also called "EME2000"), but other
frames can be specified in the file. See the PCK Required Reading
for details.
The first two angles, in order, are the J2000 right ascension and
declination (henceforth RA and DEC) of the north pole of a body as
a function of time. The third angle is the prime meridian location
(represented by "W"), which is expressed as a rotation about the
north pole, and is also a function of time.
For the Sun and planets, the expressions for the north pole's
right ascension and declination, as well as prime meridian
location, are sums (as far as the models that appear in this file
are concerned) of quadratic polynomials and trigonometric
polynomials, where the independent variable is time. Some
coefficients may be zero. Currently Neptune is the only planet
for which trigonometric polynomial terms are used.
In this file, the time arguments in expressions always refer to
Barycentric Dynamical Time (TDB), measured in centuries or days
past a reference epoch. By default, the reference epoch is
the J2000 epoch, which is Julian ephemeris date 2451545.0, but
other epochs can be specified in the file. See the PCK Required
Reading for details.
Example: 1991 IAU Model for orientation of the Earth. Note that
these values are used as an example only; see the data area below
for current values.
alpha = 0.00 - 0.641 T ( RA )
0
delta = 90.0 - 0.557 T ( DEC )
0
W = 190.16 + 360.9856235 d ( Prime meridian )
T represents centuries past J2000 ( TDB ),
d represents days past J2000 ( TDB ).
In this file, the polynomials' coefficients above are assigned to the
symbols
BODY399_POLE_RA
BODY399_POLE_DEC
BODY399_POLE_PM
as follows:
BODY399_POLE_RA = ( 0. -0.641 0. )
BODY399_POLE_DEC = ( 90. -0.557 0. )
BODY399_PM = ( 190.16 360.9856235 0. )
Note the number "399"; this is the NAIF ID code for the Earth.
You'll see an additional symbol grouped with the ones listed here; it
is
BODY399_LONG_AXIS
This term is zero for all bodies except Mars. It represents the
angular offset between the meridian containing the longest axis of
the triaxial ellipsoid used to model a body and the prime meridian
of the body.
Expressions for satellites are a little more complicated; in addition
to polynomial terms, there are trigonometric terms. The arguments of
the trigonometric terms are linear polynomials. In this file, we call
the arguments of these trigonometric terms "nutation precession
angles."
In this file, the polynomial expressions for the nutation precession
angles are listed along with the planet's RA, DEC, and prime meridian
terms.
Example: 1991 IAU nutation precession angles for Earth. Note that these
values are used as an example only; see the data area below for current
values.
E1 = 125.045 - 0.052992 d
E2 = 250.090 - 0.105984 d
E3 = 260.008 + 13.012001 d
E4 = 176.625 + 13.340716 d
E5 = 357.529 + 0.985600 d
d represents days past J2000 ( TDB )
Because the SPICE Toolkit software expects the time units for the
angles to be CENTURIES (as in the IAU models for most bodies--the
Earth is an exception), the linear coefficients are scaled by
36525.0 (days/century) in the assignments:
BODY3_NUT_PREC_ANGLES = ( 125.045 -1935.5328
250.090 -3871.0656
260.008 475263.336525
176.625 487269.6519
357.529 35999.04 )
As stated above, the satellite orientation models use polynomial and
trigonometric terms, where the arguments of the trigonometric terms
are the "nutation precession angles."
Example: 1988 IAU values for the Moon. Again, these values are used
as an example only; see the data area below for current values.
alpha = 270.000 + 0.003 T - 3.878 sin(E1) - 0.120 sin(E2)
0
+ 0.070 sin(E3) - 0.017 sin(E4) (RA)
delta = 66.541 + 0.013 T + 1.543 cos(E1) + 0.024 cos(E2)
0
- 0.028 cos(E3) + 0.007 cos(E4) (DEC)
W = 38.317 + 13.1763582 d + 3.558 sin(E1)
+ 0.121 sin(E2)
- 0.064 sin(E3)
+ 0.016 sin(E4)
+ 0.025 sin(E5) ( Prime
meridian )
d represents days past J2000.
E1--E5 are the nutation precession angles.
The polynomial terms are assigned to symbols by the statements
BODY301_POLE_RA = ( 270.000 0.003 0. )
BODY301_POLE_DEC = ( 66.541 0.013 0. )
BODY301_PM = ( 38.317 13.1763582 0. )
The coefficients of the trigonometric terms are assigned to symbols by
the statements
BODY301_NUT_PREC_RA = ( -3.878 -0.120 0.070 -0.017 0. )
BODY301_NUT_PREC_DEC = ( 1.543 0.024 -0.028 0.007 0. )
BODY301_NUT_PREC_PM = ( 3.558 0.121 -0.064 0.016 0.025 )
Note that for the RA and PM (prime meridian) assignments, the ith term
is the coefficient of sin(Ei) in the expression used in the IAU model,
while for the DEC assignment, the ith term is the coefficient of
cos(Ei) in the expression used in the IAU model.
SPICE software expects the models for satellite orientation to
follow the form of the model shown here: the polynomial portions of the
RA, DEC, and W expressions are expected to be quadratic, the
trigonometric terms for RA and W (satellite prime meridian) are expected
to be linear combinations of sines of nutation precession angles, the
trigonometric terms for DEC are expected to be linear combinations of
cosines of nutation precession angles, and the polynomials for the
nutation precession angles themselves are expected to be linear.
Eventually, the software will handle more complex expressions, we
expect.
Shape models
There is only one kind of shape model supported by the SPICE Toolkit
software at present: the triaxial ellipsoid. The 2000 IAU report does
not use any other models, except in the case of Mars, where
separate values are given for the north and south polar radii.
For each body, three radii are listed: The first number is
the largest equatorial radius (the length of the semi-axis
containing the prime meridian), the second number is the smaller
equatorial radius, and the third is the polar radius.
Example: Radii of the Earth.
BODY399_RADII = ( 6378.14 6378.14 6356.75 )
Body numbers and names
--------------------------------------------------------
1 Mercury barycenter
2 Venus barycenter
3 Earth barycenter
4 Mars barycenter
5 Jupiter barycenter
6 Saturn barycenter
7 Uranus barycenter
8 Neptune barycenter
9 Pluto barycenter
10 Sun
While not relevant to the P_constants kernel, we note here for
completeness that 0 is used to represent the solar system
barycenter.
199 Mercury
299 Venus
399 Earth
301 Moon
499 Mars
401 Phobos 402 Deimos
599 Jupiter
501 Io 502 Europa 503 Ganymede 504 Callisto
505 Amalthea 506 Himalia 507 Elara 508 Pasiphae
509 Sinope 510 Lysithea 511 Carme 512 Ananke
513 Leda 514 Thebe 515 Adrastea 516 Metis
699 Saturn
601 Mimas 602 Enceladus 603 Tethys 604 Dione
605 Rhea 606 Titan 607 Hyperion 608 Iapetus
609 Phoebe 610 Janus 611 Epimetheus 612 Helene
613 Telesto 614 Calypso 615 Atlas 616 Prometheus
617 Pandora 618 Pan
799 Uranus
701 Ariel 702 Umbriel 703 Titania 704 Oberon
705 Miranda 706 Cordelia 707 Ophelia 708 Bianca
709 Cressida 710 Desdemona 711 Juliet 712 Portia
713 Rosalind 714 Belinda 715 Puck
899 Neptune
801 Triton 802 Nereid 803 Naiad 804 Thalassa
805 Despina 806 Galatea 807 Larissa 808 Proteus
999 Pluto
901 Charon
2000004 Asteroid Vesta
2000216 Asteroid Kleopatra
2000433 Asteroid Eros
2431010 Asteroid Ida
9511010 Asteroid Gaspra
Orientation constants for the Sun and planets
--------------------------------------------------------
Sun
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY10_POLE_RA = ( 286.13 0. 0. )
BODY10_POLE_DEC = ( 63.87 0. 0. )
BODY10_PM = ( 84.10 14.18440 0. )
BODY10_LONG_AXIS = ( 0. )
\begintext
Mercury
Old values:
body199_pole_ra = ( 281.01, -0.033, 0. )
body199_pole_dec = ( 61.45, -0.005, 0. )
body199_pm = ( 329.55 6.1385025 0. )
body199_long_axis = ( 0. )
Current values:
\begindata
BODY199_POLE_RA = ( 281.01 -0.033 0. )
BODY199_POLE_DEC = ( 61.45 -0.005 0. )
BODY199_PM = ( 329.548 6.1385025 0. )
BODY199_LONG_AXIS = ( 0. )
\begintext
Venus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY299_POLE_RA = ( 272.76 0. 0. )
BODY299_POLE_DEC = ( 67.16 0. 0. )
BODY299_PM = ( 160.20 -1.4813688 0. )
BODY299_LONG_AXIS = ( 0. )
\begintext
Earth
Old values:
Values shown are from the 1994 IAU report [4].
body399_pole_ra = ( 0. -0.641 0. )
body399_pole_dec = ( 90. -0.557 0. )
body399_pm = ( 190.16 360.9856235 0. )
body399_long_axis = ( 0. )
Nutation precession angles are unchanged in the 2000 report.
Current values:
\begindata
BODY399_POLE_RA = ( 0. -0.641 0. )
BODY399_POLE_DEC = ( 90. -0.557 0. )
BODY399_PM = ( 190.147 360.9856235 0. )
BODY399_LONG_AXIS = ( 0. )
\begintext
Nutation precession angles for the Earth-Moon system:
The linear coefficients have been scaled up from degrees/day
to degrees/century, because the SPICELIB PCK reader expects
these units. The original constants were:
125.045D0 -0.0529921D0
250.089D0 -0.1059842D0
260.008D0 13.0120009D0
176.625D0 13.3407154D0
357.529D0 0.9856003D0
311.589D0 26.4057084D0
134.963D0 13.0649930D0
276.617D0 0.3287146D0
34.226D0 1.7484877D0
15.134D0 -0.1589763D0
119.743D0 0.0036096D0
239.961D0 0.1643573D0
25.053D0 12.9590088D0
\begindata
BODY3_NUT_PREC_ANGLES = ( 125.045 -1935.5364525000
250.089 -3871.0729050000
260.008 475263.3328725000
176.625 487269.6299850000
357.529 35999.0509575000
311.589 964468.4993100000
134.963 477198.8693250000
276.617 12006.3007650000
34.226 63863.5132425000
15.134 -5806.6093575000
119.743 131.8406400000
239.961 6003.1503825000
25.053 473327.7964200000 )
\begintext
Earth north geomagnetic centered dipole:
Old values:
Values are from [11]. Note the year of publication was 1971.
body399_mag_north_pole_lon = ( -69.761 )
body399_mag_north_pole_lat = ( 78.565 )
Current values:
The north dipole location is time-varying. The values shown
below, taken from [12], represent a discrete sampling of the
north dipole location from 1945 to 2000. The terms DGRF and
IGRF refer to, respectively, "Definitive Geomagnetic
Reference Field" and "International Geomagnetic Reference
Field." See references [10], [12], and [13] for details.
Coordinates are planetocentric.
Data source Lat Lon
----------- ----- ------
DGRF 1945 78.47 291.47
DGRF 1950 78.47 291.15
DGRF 1955 78.46 290.84
DGRF 1960 78.51 290.53
DGRF 1965 78.53 290.15
DGRF 1970 78.59 289.82
DGRF 1975 78.69 289.53
DGRF 1980 78.81 289.24
DGRF 1985 78.97 289.10
DGRF 1990 79.13 288.89
IGRF 1995 79.30 288.59
IGRF 2000 79.54 288.43
Values are given for the epoch 2000 and are from the final row
of the above table, which is from [12]. As shown by the table
these values constitute a low-accuracy approximation for epochs
not close to 2000.
\begindata
BODY399_N_GEOMAG_CTR_DIPOLE_LON = ( 288.43 )
BODY399_N_GEOMAG_CTR_DIPOLE_LAT = ( 79.54 )
\begintext
Mars
Old values:
Values shown are from the 1994 IAU report [4].
body499_pole_ra = ( 317.681 -0.108 0. )
body499_pole_dec = ( 52.886 -0.061 0. )
body499_pm = ( 176.901 350.8919830 0. )
Nutation precession angles are unchanged in the 2000 IAU report.
Old lambda_a values were specified as POSITIVE WEST LONGITUDE.
Reference [14] gave the value
body499_long_axis = ( 110. )
and reference [15] gave the value
body499_long_axis = ( 104.9194 )
Current values:
\begindata
BODY499_POLE_RA = ( 317.68143 -0.1061 0. )
BODY499_POLE_DEC = ( 52.88650 -0.0609 0. )
BODY499_PM = ( 176.630 350.89198226 0. )
\begintext
Source [9] specifies the following value for the lambda_a term
(BODY499_LONG_AXIS ) for Mars. This term is the POSITIVE EAST
LONGITUDE, measured from the prime meridian, of the meridian
containing the longest axis of the reference ellipsoid.
(CAUTION: previous values were POSITIVE WEST.)
body499_long_axis = ( 252. )
We list this lambda_a value for completeness. The IAU report
[2] gives equal values for both equatorial radii, so the
lambda_a offset does not apply to the IAU model.
The 2000 IAU report defines M2, the second nutation precession angle,
by:
2
192.93 + 1128.4096700 d + 8.864 T
We truncate the M2 series to a linear expression, because the PCK
software cannot handle the quadratic term.
Again, the linear terms are scaled by 36525.0:
-0.4357640000000000 --> -15916.28010000000
1128.409670000000 --> 41215163.19675000
-1.8151000000000000E-02 --> -662.9652750000000
We also introduce a fourth nutation precession angle, which
is the pi/2-complement of the third angle. This angle is used
in computing the prime meridian location for Deimos. See the
discussion of this angle below in the section containing orientation
constants for Deimos.
\begindata
BODY4_NUT_PREC_ANGLES = ( 169.51 -15916.2801
192.93 41215163.19675
53.47 -662.965275
36.53 662.965275 )
\begintext
Jupiter
Old values:
body599_pole_ra = ( 268.05 -0.009 0. )
body599_pole_dec = ( +64.49 +0.003 0. )
body599_pm = ( 284.95 +870.5366420 0. )
body599_long_axis = ( 0. )
body5_nut_prec_angles = ( 73.32 +91472.9
24.62 +45137.2
283.90 +4850.7
355.80 +1191.3
119.90 +262.1
229.80 +64.3
352.25 +2382.6
113.35 +6070.0
146.64 +182945.8
49.24 +90274.4 )
Current values:
The number of nutation precession angles is ten. The ninth and
tenth are twice the first and second, respectively.
\begindata
BODY599_POLE_RA = ( 268.05 -0.009 0. )
BODY599_POLE_DEC = ( 64.49 0.003 0. )
BODY599_PM = ( 284.95 870.5366420 0. )
BODY599_LONG_AXIS = ( 0. )
BODY5_NUT_PREC_ANGLES = ( 73.32 91472.9
24.62 45137.2
283.90 4850.7
355.80 1191.3
119.90 262.1
229.80 64.3
352.35 2382.6
113.35 6070.0
146.64 182945.8
49.24 90274.4 )
\begintext
Saturn
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY699_POLE_RA = ( 40.589 -0.036 0. )
BODY699_POLE_DEC = ( 83.537 -0.004 0. )
BODY699_PM = ( 38.90 810.7939024 0. )
BODY699_LONG_AXIS = ( 0. )
\begintext
The first seven angles given here are the angles S1
through S7 from the 2000 report; the eighth and
ninth angles are 2*S1 and 2*S2, respectively.
\begindata
BODY6_NUT_PREC_ANGLES = ( 353.32 75706.7
28.72 75706.7
177.40 -36505.5
300.00 -7225.9
316.45 506.2
345.20 -1016.3
29.80 -52.1
706.64 151413.4
57.44 151413.4 )
\begintext
Uranus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY799_POLE_RA = ( 257.311 0. 0. )
BODY799_POLE_DEC = ( -15.175 0. 0. )
BODY799_PM = ( 203.81 -501.1600928 0. )
BODY799_LONG_AXIS = ( 0. )
\begintext
The first 16 angles given here are the angles U1
through U16 from the 2000 report; the 17th and
18th angles are 2*U11 and 2*U12, respectively.
\begindata
BODY7_NUT_PREC_ANGLES = ( 115.75 54991.87
141.69 41887.66
135.03 29927.35
61.77 25733.59
249.32 24471.46
43.86 22278.41
77.66 20289.42
157.36 16652.76
101.81 12872.63
138.64 8061.81
102.23 -2024.22
316.41 2863.96
304.01 -51.94
308.71 -93.17
340.82 -75.32
259.14 -504.81
204.46 -4048.44
632.82 5727.92 )
\begintext
Neptune
Old values:
Values are unchanged in the 2000 IAU report. However,
the kernel variables used to store the values have changed.
See note immediately below.
Current values:
The kernel variables
BODY899_NUT_PREC_RA
BODY899_NUT_PREC_DEC
BODY899_NUT_PREC_PM
are new in this PCK version (dated October 17, 2003).
These variables capture trigonometric terms in the expressions
for Neptune's pole direction and prime meridian location.
Version N0057 of the SPICE Toolkit uses these variables;
earlier versions can read them but ignore them when
computing Neptune's orientation.
\begindata
BODY899_POLE_RA = ( 299.36 0. 0. )
BODY899_POLE_DEC = ( 43.46 0. 0. )
BODY899_PM = ( 253.18 536.3128492 0. )
BODY899_LONG_AXIS = ( 0. )
BODY899_NUT_PREC_RA = ( 0.70 0. 0. 0. 0. 0. 0. 0. )
BODY899_NUT_PREC_DEC = ( -0.51 0. 0. 0. 0. 0. 0. 0. )
BODY899_NUT_PREC_PM = ( -0.48 0. 0. 0. 0. 0. 0. 0. )
\begintext
The 2000 report defines the nutation precession angles
N, N1, N2, ... , N7
and also uses the multiples of N1 and N7
2*N1
and
2*N7, 3*N7, ..., 9*N7
In this file, we treat the angles and their multiples as
separate angles. In the kernel variable
BODY8_NUT_PREC_ANGLES
the order of the angles is
N, N1, N2, ... , N7, 2*N1, 2*N7, 3*N7, ..., 9*N7
Each angle is defined by a linear polynomial, so two
consecutive array elements are allocated for each
angle. The first term of each pair is the constant term,
the second is the linear term.
\begindata
BODY8_NUT_PREC_ANGLES = ( 357.85 52.316
323.92 62606.6
220.51 55064.2
354.27 46564.5
75.31 26109.4
35.36 14325.4
142.61 2824.6
177.85 52.316
647.840 125213.200
355.700 104.632
533.550 156.948
711.400 209.264
889.250 261.580
1067.100 313.896
1244.950 366.212
1422.800 418.528
1600.650 470.844 )
\begintext
Pluto
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY999_POLE_RA = ( 313.02 0. 0. )
BODY999_POLE_DEC = ( 9.09 0. 0. )
BODY999_PM = ( 236.77 -56.3623195 0. )
BODY999_LONG_AXIS = ( 0. )
\begintext
Orientation constants for the satellites
--------------------------------------------------------
Satellites of Earth
Old values:
Values are from the 1988 IAU report.
body301_pole_ra = ( 270.000 0. 0. )
body301_pole_dec = ( 66.534 0. 0. )
body301_pm = ( 38.314 13.1763581 0. )
body301_long_axis = ( 0. )
body301_nut_prec_ra = ( -3.878 -0.120 0.070 -0.017 0. )
body301_nut_prec_dec = ( 1.543 0.024 -0.028 0.007 0. )
body301_nut_prec_pm = ( 3.558 0.121 -0.064 0.016 0.025 )
BODY301_POLE_RA = ( 269.9949 0.0031 0. )
BODY301_POLE_DEC = ( 66.5392 0.0130 0. )
BODY301_PM = ( 38.3213 13.17635815 -1.4D-12 )
BODY301_LONG_AXIS = ( 0. )
BODY301_NUT_PREC_RA = ( -3.8787 -0.1204 0.0700 -0.0172
0. 0.0072 0. 0.
0. -0.0052 0. 0.
0.0043 )
BODY301_NUT_PREC_DEC = ( 1.5419 0.0239 -0.0278 0.0068
0. -0.0029 0.0009 0.
0. 0.0008 0. 0.
-0.0009 )
BODY301_NUT_PREC_PM = ( 3.5610 0.1208 -0.0642 0.0158
0.0252 -0.0066 -0.0047 -0.0046
0.0028 0.0052 0.0040 0.0019
-0.0044 )
New values:
\begindata
BODY301_POLE_RA = ( 269.9949 0.0031 0. )
BODY301_POLE_DEC = ( 66.5392 0.0130 0. )
BODY301_PM = ( 38.3213 13.17635815 -1.4D-12 )
BODY301_LONG_AXIS = ( 0. )
BODY301_NUT_PREC_RA = ( -3.8787 -0.1204 0.0700 -0.0172
0.0 0.0072 0.0 0.0
0.0 -0.0052 0.0 0.0
0.0043 )
BODY301_NUT_PREC_DEC = ( 1.5419 0.0239 -0.0278 0.0068
0.0 -0.0029 0.0009 0.0
0.0 0.0008 0.0 0.0
-0.0009 )
BODY301_NUT_PREC_PM = ( 3.5610 0.1208 -0.0642 0.0158
0.0252 -0.0066 -0.0047 -0.0046
0.0028 0.0052 0.0040 0.0019
-0.0044 )
\begintext
Satellites of Mars
Phobos
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
The quadratic prime meridian term is scaled by 1/36525**2:
8.864000000000000 ---> 6.6443009930565219E-09
\begindata
BODY401_POLE_RA = ( 317.68 -0.108 0. )
BODY401_POLE_DEC = ( 52.90 -0.061 0. )
BODY401_PM = ( 35.06 1128.8445850 6.6443009930565219E-09 )
BODY401_LONG_AXIS = ( 0. 0. )
BODY401_NUT_PREC_RA = ( 1.79 0. 0. 0. )
BODY401_NUT_PREC_DEC = ( -1.08 0. 0. 0. )
BODY401_NUT_PREC_PM = ( -1.42 -0.78 0. 0. )
\begintext
Deimos
Old values:
Values are unchanged in the 2000 IAU report.
New values:
The Deimos prime meridian expression is:
2
W = 79.41 + 285.1618970 d - 0.520 T - 2.58 sin M
3
+ 0.19 cos M .
3
At the present time, the PCK kernel software (the routine
BODEUL in particular) cannot handle the cosine term directly,
but we can represent it as
0.19 sin M
4
where
M = 90.D0 - M
4 3
Therefore, the nutation precession angle assignments for Phobos
and Deimos contain four coefficients rather than three.
The quadratic prime meridian term is scaled by 1/36525**2:
-0.5200000000000000 ---> -3.8978300049519307E-10
\begindata
BODY402_POLE_RA = ( 316.65 -0.108 0. )
BODY402_POLE_DEC = ( 53.52 -0.061 0. )
BODY402_PM = ( 79.41 285.1618970 -3.897830D-10 )
BODY402_LONG_AXIS = ( 0. )
BODY402_NUT_PREC_RA = ( 0. 0. 2.98 0. )
BODY402_NUT_PREC_DEC = ( 0. 0. -1.78 0. )
BODY402_NUT_PREC_PM = ( 0. 0. -2.58 0.19 )
\begintext
Satellites of Jupiter
Io
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY501_POLE_RA = ( 268.05 -0.009 0. )
BODY501_POLE_DEC = ( 64.50 0.003 0. )
BODY501_PM = ( 200.39 203.4889538 0. )
BODY501_LONG_AXIS = ( 0. )
BODY501_NUT_PREC_RA = ( 0. 0. 0.094 0.024 )
BODY501_NUT_PREC_DEC = ( 0. 0. 0.040 0.011 )
BODY501_NUT_PREC_PM = ( 0. 0. -0.085 -0.022 )
\begintext
Europa
Old values:
body502_pole_ra = ( 268.08 -0.009 0. )
body502_pole_dec = ( 64.51 0.003 0. )
body502_pm = ( 35.67 101.3747235 0. )
body502_long_axis = ( 0. )
body502_nut_prec_ra = ( 0. 0. 0. 1.086 0.060 0.015 0.009 )
body502_nut_prec_dec = ( 0. 0. 0. 0.468 0.026 0.007 0.002 )
body502_nut_prec_pm = ( 0. 0. 0. -0.980 -0.054 -0.014 -0.008 )
Current values:
\begindata
BODY502_POLE_RA = ( 268.08 -0.009 0. )
BODY502_POLE_DEC = ( 64.51 0.003 0. )
BODY502_PM = ( 36.022 101.3747235 0. )
BODY502_LONG_AXIS = ( 0. )
BODY502_NUT_PREC_RA = ( 0. 0. 0. 1.086 0.060 0.015 0.009 )
BODY502_NUT_PREC_DEC = ( 0. 0. 0. 0.468 0.026 0.007 0.002 )
BODY502_NUT_PREC_PM = ( 0. 0. 0. -0.980 -0.054 -0.014 -0.008 )
\begintext
Ganymede
Old values:
body503_pole_ra = ( 268.20 -0.009 0. )
body503_pole_dec = ( +64.57 +0.003 0. )
body503_pm = ( 44.04 +50.3176081 0. )
body503_long_axis = ( 0. )
body503_nut_prec_ra = ( 0. 0. 0. -0.037 +0.431 +0.091 )
body503_nut_prec_dec = ( 0. 0. 0. -0.016 +0.186 +0.039 )
body503_nut_prec_pm = ( 0. 0. 0. +0.033 -0.389 -0.082 )
Current values:
\begindata
BODY503_POLE_RA = ( 268.20 -0.009 0. )
BODY503_POLE_DEC = ( 64.57 0.003 0. )
BODY503_PM = ( 44.064 50.3176081 0. )
BODY503_LONG_AXIS = ( 0. )
BODY503_NUT_PREC_RA = ( 0. 0. 0. -0.037 0.431 0.091 )
BODY503_NUT_PREC_DEC = ( 0. 0. 0. -0.016 0.186 0.039 )
BODY503_NUT_PREC_PM = ( 0. 0. 0. 0.033 -0.389 -0.082 )
\begintext
Callisto
Old values:
body504_pole_ra = ( 268.72 -0.009 0. )
body504_pole_dec = ( +64.83 +0.003 0. )
body504_pm = ( 259.73 +21.5710715 0. )
body504_long_axis = ( 0. )
body504_nut_prec_ra = ( 0. 0. 0. 0. -0.068 +0.590 0. +0.010 )
body504_nut_prec_dec = ( 0. 0. 0. 0. -0.029 +0.254 0. -0.004 )
body504_nut_prec_pm = ( 0. 0. 0. 0. +0.061 -0.533 0. -0.009 )
Current values:
\begindata
BODY504_POLE_RA = ( 268.72 -0.009 0. )
BODY504_POLE_DEC = ( 64.83 0.003 0. )
BODY504_PM = ( 259.51 21.5710715 0. )
BODY504_LONG_AXIS = ( 0. )
BODY504_NUT_PREC_RA = ( 0. 0. 0. 0. -0.068 0.590 0. 0.010 )
BODY504_NUT_PREC_DEC = ( 0. 0. 0. 0. -0.029 0.254 0. -0.004 )
BODY504_NUT_PREC_PM = ( 0. 0. 0. 0. 0.061 -0.533 0. -0.009 )
\begintext
Amalthea
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY505_POLE_RA = ( 268.05 -0.009 0. )
BODY505_POLE_DEC = ( 64.49 0.003 0. )
BODY505_PM = ( 231.67 722.6314560 0. )
BODY505_LONG_AXIS = ( 0. )
BODY505_NUT_PREC_RA = ( -0.84 0. 0. 0. 0. 0. 0. 0. 0.01 0. )
BODY505_NUT_PREC_DEC = ( -0.36 0. 0. 0. 0. 0. 0. 0. 0. 0. )
BODY505_NUT_PREC_PM = ( 0.76 0. 0. 0. 0. 0. 0. 0. -0.01 0. )
\begintext
Thebe
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY514_POLE_RA = ( 268.05 -0.009 0. )
BODY514_POLE_DEC = ( 64.49 0.003 0. )
BODY514_PM = ( 8.56 533.7004100 0. )
BODY514_LONG_AXIS = ( 0. )
BODY514_NUT_PREC_RA = ( 0. -2.11 0. 0. 0. 0. 0. 0. 0. 0.04 )
BODY514_NUT_PREC_DEC = ( 0. -0.91 0. 0. 0. 0. 0. 0. 0. 0.01 )
BODY514_NUT_PREC_PM = ( 0. 1.91 0. 0. 0. 0. 0. 0. 0. -0.04 )
\begintext
Adrastea
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY515_POLE_RA = ( 268.05 -0.009 0. )
BODY515_POLE_DEC = ( 64.49 0.003 0. )
BODY515_PM = ( 33.29 1206.9986602 0. )
BODY515_LONG_AXIS = ( 0. )
\begintext
Metis
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY516_POLE_RA = ( 268.05 -0.009 0. )
BODY516_POLE_DEC = ( 64.49 0.003 0. )
BODY516_PM = ( 346.09 1221.2547301 0. )
BODY516_LONG_AXIS = ( 0. )
\begintext
Satellites of Saturn
Mimas
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY601_POLE_RA = ( 40.66 -0.036 0. )
BODY601_POLE_DEC = ( 83.52 -0.004 0. )
BODY601_PM = ( 337.46 381.9945550 0. )
BODY601_LONG_AXIS = ( 0. )
BODY601_NUT_PREC_RA = ( 0. 0. 13.56 0. 0. 0. 0. 0. 0. )
BODY601_NUT_PREC_DEC = ( 0. 0. -1.53 0. 0. 0. 0. 0. 0. )
BODY601_NUT_PREC_PM = ( 0. 0. -13.48 0. -44.85 0. 0. 0. 0. )
\begintext
Enceladus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY602_POLE_RA = ( 40.66 -0.036 0. )
BODY602_POLE_DEC = ( 83.52 -0.004 0. )
BODY602_PM = ( 2.82 262.7318996 0. )
BODY602_LONG_AXIS = ( 0. )
\begintext
Tethys
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY603_POLE_RA = ( 40.66 -0.036 0. )
BODY603_POLE_DEC = ( 83.52 -0.004 0. )
BODY603_PM = ( 10.45 190.6979085 0. )
BODY603_LONG_AXIS = ( 0. )
BODY603_NUT_PREC_RA = ( 0. 0. 0. 9.66 0. 0. 0. 0. 0. )
BODY603_NUT_PREC_DEC = ( 0. 0. 0. -1.09 0. 0. 0. 0. 0. )
BODY603_NUT_PREC_PM = ( 0. 0. 0. -9.60 2.23 0. 0. 0. 0. )
\begintext
Dione
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY604_POLE_RA = ( 40.66 -0.036 0. )
BODY604_POLE_DEC = ( 83.52 -0.004 0. )
BODY604_PM = ( 357.00 131.5349316 0. )
BODY604_LONG_AXIS = ( 0. )
\begintext
Rhea
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY605_POLE_RA = ( 40.38 -0.036 0. )
BODY605_POLE_DEC = ( 83.55 -0.004 0. )
BODY605_PM = ( 235.16 79.6900478 0. )
BODY605_LONG_AXIS = ( 0. )
BODY605_NUT_PREC_RA = ( 0. 0. 0. 0. 0. 3.10 0. 0. 0. )
BODY605_NUT_PREC_DEC = ( 0. 0. 0. 0. 0. -0.35 0. 0. 0. )
BODY605_NUT_PREC_PM = ( 0. 0. 0. 0. 0. -3.08 0. 0. 0. )
\begintext
Titan
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY606_POLE_RA = ( 36.41 -0.036 0. )
BODY606_POLE_DEC = ( 83.94 -0.004 0. )
BODY606_PM = ( 189.64 22.5769768 0. )
BODY606_LONG_AXIS = ( 0. )
BODY606_NUT_PREC_RA = ( 0. 0. 0. 0. 0. 0. 2.66 0. 0 )
BODY606_NUT_PREC_DEC = ( 0. 0. 0. 0. 0. 0. -0.30 0. 0 )
BODY606_NUT_PREC_PM = ( 0. 0. 0. 0. 0. 0. -2.64 0. 0 )
\begintext
Hyperion
The IAU report does not give an orientation model for Hyperion.
Hyperion's rotation is in chaotic and is not predictable for
long periods.
Iapetus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY608_POLE_RA = ( 318.16 -3.949 0. )
BODY608_POLE_DEC = ( 75.03 -1.143 0. )
BODY608_PM = ( 350.20 4.5379572 0. )
BODY608_LONG_AXIS = ( 0. )
\begintext
Phoebe
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY609_POLE_RA = ( 355.00 0. 0. )
BODY609_POLE_DEC = ( 68.70 0. 0. )
BODY609_PM = ( 304.70 930.8338720 0. )
BODY609_LONG_AXIS = ( 0. )
\begintext
Janus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY610_POLE_RA = ( 40.58 -0.036 0. )
BODY610_POLE_DEC = ( 83.52 -0.004 0. )
BODY610_PM = ( 58.83 518.2359876 0. )
BODY610_LONG_AXIS = ( 0. )
BODY610_NUT_PREC_RA = ( 0. -1.623 0. 0. 0. 0. 0. 0. 0.023 )
BODY610_NUT_PREC_DEC = ( 0. -0.183 0. 0. 0. 0. 0. 0. 0.001 )
BODY610_NUT_PREC_PM = ( 0. 1.613 0. 0. 0. 0. 0. 0. -0.023 )
\begintext
Epimetheus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY611_POLE_RA = ( 40.58 -0.036 0. )
BODY611_POLE_DEC = ( 83.52 -0.004 0. )
BODY611_PM = ( 293.87 518.4907239 0. )
BODY611_LONG_AXIS = ( 0. )
BODY611_NUT_PREC_RA = ( -3.153 0. 0. 0. 0. 0. 0. 0.086 0. )
BODY611_NUT_PREC_DEC = ( -0.356 0. 0. 0. 0. 0. 0. 0.005 0. )
BODY611_NUT_PREC_PM = ( 3.133 0. 0. 0. 0. 0. 0. -0.086 0. )
\begintext
Helene
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY612_POLE_RA = ( 40.85 -0.036 0. )
BODY612_POLE_DEC = ( 83.34 -0.004 0. )
BODY612_PM = ( 245.12 131.6174056 0. )
BODY612_LONG_AXIS = ( 0. )
\begintext
Telesto
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY613_POLE_RA = ( 50.51 -0.036 0. )
BODY613_POLE_DEC = ( 84.06 -0.004 0. )
BODY613_PM = ( 56.88 190.6979332 0. )
BODY613_LONG_AXIS = ( 0. )
\begintext
Calypso
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY614_POLE_RA = ( 36.41 -0.036 0. )
BODY614_POLE_DEC = ( 85.04 -0.004 0. )
BODY614_PM = ( 153.51 190.6742373 0. )
BODY614_LONG_AXIS = ( 0. )
\begintext
Atlas
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY615_POLE_RA = ( 40.58 -0.036 0. )
BODY615_POLE_DEC = ( 83.53 -0.004 0. )
BODY615_PM = ( 137.88 598.3060000 0. )
BODY615_LONG_AXIS = ( 0. )
\begintext
Prometheus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY616_POLE_RA = ( 40.58 -0.036 )
BODY616_POLE_DEC = ( 83.53 -0.004 )
BODY616_PM = ( 296.14 587.289000 )
BODY616_LONG_AXIS = ( 0. )
\begintext
Pandora
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY617_POLE_RA = ( 40.58 -0.036 0. )
BODY617_POLE_DEC = ( 83.53 -0.004 0. )
BODY617_PM = ( 162.92 572.7891000 0. )
BODY617_LONG_AXIS = ( 0. )
\begintext
Pan
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY618_POLE_RA = ( 40.6 -0.036 0. )
BODY618_POLE_DEC = ( 83.5 -0.004 0. )
BODY618_PM = ( 48.8 626.0440000 0. )
BODY618_LONG_AXIS = ( 0. )
\begintext
Satellites of Uranus
Ariel
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY701_POLE_RA = ( 257.43 0. 0. )
BODY701_POLE_DEC = ( -15.10 0. 0. )
BODY701_PM = ( 156.22 -142.8356681 0. )
BODY701_LONG_AXIS = ( 0. )
BODY701_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.29 )
BODY701_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.28 )
BODY701_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0.05 0.08 )
\begintext
Umbriel
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY702_POLE_RA = ( 257.43 0. 0. )
BODY702_POLE_DEC = ( -15.10 0. 0. )
BODY702_PM = ( 108.05 -86.8688923 0. )
BODY702_LONG_AXIS = ( 0. )
BODY702_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.21 )
BODY702_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0.20 )
BODY702_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. -0.09 0. 0.06 )
\begintext
Titania
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY703_POLE_RA = ( 257.43 0. 0. )
BODY703_POLE_DEC = ( -15.10 0. 0. )
BODY703_PM = ( 77.74 -41.3514316 0. )
BODY703_LONG_AXIS = ( 0. )
BODY703_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.29 )
BODY703_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.28 )
BODY703_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.08 )
\begintext
Oberon
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY704_POLE_RA = ( 257.43 0. 0. )
BODY704_POLE_DEC = ( -15.10 0. 0. )
BODY704_PM = ( 6.77 -26.7394932 0. )
BODY704_LONG_AXIS = ( 0. )
BODY704_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.16 )
BODY704_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.16 )
BODY704_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.04 )
\begintext
Miranda
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY705_POLE_RA = ( 257.43 0. 0. )
BODY705_POLE_DEC = ( -15.08 0. 0. )
BODY705_PM = ( 30.70 -254.6906892 0. )
BODY705_LONG_AXIS = ( 0. )
BODY705_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
4.41 0. 0. 0. 0.
0. -0.04 0. )
BODY705_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
4.25 0. 0. 0. 0.
0. -0.02 0. )
BODY705_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
1.15 -1.27 0. 0. 0.
0. -0.09 0.15 )
\begintext
Cordelia
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY706_POLE_RA = ( 257.31 0. 0. )
BODY706_POLE_DEC = ( -15.18 0. 0. )
BODY706_PM = ( 127.69 -1074.5205730 0. )
BODY706_LONG_AXIS = ( 0. )
BODY706_NUT_PREC_RA = ( -0.15 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY706_NUT_PREC_DEC = ( 0.14 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY706_NUT_PREC_PM = ( -0.04 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Ophelia
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY707_POLE_RA = ( 257.31 0. 0. )
BODY707_POLE_DEC = ( -15.18 0. 0. )
BODY707_PM = ( 130.35 -956.4068150 0. )
BODY707_LONG_AXIS = ( 0. )
BODY707_NUT_PREC_RA = ( 0. -0.09 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY707_NUT_PREC_DEC = ( 0. 0.09 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY707_NUT_PREC_PM = ( 0. -0.03 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Bianca
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY708_POLE_RA = ( 257.31 0. 0. )
BODY708_POLE_DEC = ( -15.18 0. 0. )
BODY708_PM = ( 105.46 -828.3914760 0. )
BODY708_LONG_AXIS = ( 0. )
BODY708_NUT_PREC_RA = ( 0. 0. -0.16 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY708_NUT_PREC_DEC = ( 0. 0. 0.16 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY708_NUT_PREC_PM = ( 0. 0. -0.04 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Cressida
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY709_POLE_RA = ( 257.31 0. 0. )
BODY709_POLE_DEC = ( -15.18 0. 0. )
BODY709_PM = ( 59.16 -776.5816320 0. )
BODY709_LONG_AXIS = ( 0. )
BODY709_NUT_PREC_RA = ( 0. 0. 0. -0.04 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY709_NUT_PREC_DEC = ( 0. 0. 0. 0.04 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY709_NUT_PREC_PM = ( 0. 0. 0. -0.01 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Desdemona
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY710_POLE_RA = ( 257.31 0. 0. )
BODY710_POLE_DEC = ( -15.18 0. 0. )
BODY710_PM = ( 95.08 -760.0531690 0. )
BODY710_LONG_AXIS = ( 0. )
BODY710_NUT_PREC_RA = ( 0. 0. 0. 0. -0.17
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY710_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.16
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY710_NUT_PREC_PM = ( 0. 0. 0. 0. -0.04
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Juliet
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY711_POLE_RA = ( 257.31 0. 0. )
BODY711_POLE_DEC = ( -15.18 0. 0. )
BODY711_PM = ( 302.56 -730.1253660 0. )
BODY711_LONG_AXIS = ( 0. )
BODY711_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
-0.06 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY711_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0.06 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY711_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
-0.02 0. 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Portia
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY712_POLE_RA = ( 257.31 0. 0. )
BODY712_POLE_DEC = ( -15.18 0. 0. )
BODY712_PM = ( 25.03 -701.4865870 0. )
BODY712_LONG_AXIS = ( 0. )
BODY712_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
0. -0.09 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY712_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0. 0.09 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY712_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
0. -0.02 0. 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Rosalind
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY713_POLE_RA = ( 257.31 0. 0. )
BODY713_POLE_DEC = ( -15.18 0. 0. )
BODY713_PM = ( 314.90 -644.6311260 0. )
BODY713_LONG_AXIS = ( 0. )
BODY713_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
0. 0. -0.29 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY713_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0. 0. 0.28 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY713_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
0. 0. -0.08 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Belinda
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY714_POLE_RA = ( 257.31 0. 0. )
BODY714_POLE_DEC = ( -15.18 0. 0. )
BODY714_PM = ( 297.46 -577.3628170 0. )
BODY714_LONG_AXIS = ( 0. )
BODY714_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
0. 0. 0. -0.03 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY714_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0. 0. 0. 0.03 0.
0. 0. 0. 0. 0.
0. 0. 0. )
BODY714_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
0. 0. 0. -0.01 0.
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Puck
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY715_POLE_RA = ( 257.31 0. 0. )
BODY715_POLE_DEC = ( -15.18 0. 0. )
BODY715_PM = ( 91.24 -472.5450690 0. )
BODY715_LONG_AXIS = ( 0. )
BODY715_NUT_PREC_RA = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. -0.33
0. 0. 0. 0. 0.
0. 0. 0. )
BODY715_NUT_PREC_DEC = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.31
0. 0. 0. 0. 0.
0. 0. 0. )
BODY715_NUT_PREC_PM = ( 0. 0. 0. 0. 0.
0. 0. 0. 0. -0.09
0. 0. 0. 0. 0.
0. 0. 0. )
\begintext
Satellites of Neptune
Triton
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY801_POLE_RA = ( 299.36 0. 0. )
BODY801_POLE_DEC = ( 41.17 0. 0. )
BODY801_PM = ( 296.53 -61.2572637 0. )
BODY801_LONG_AXIS = ( 0. )
BODY801_NUT_PREC_RA = ( 0. 0. 0. 0.
0. 0. 0. -32.35
0. -6.28 -2.08 -0.74
-0.28 -0.11 -0.07 -0.02
-0.01 )
BODY801_NUT_PREC_DEC = ( 0. 0. 0. 0.
0. 0. 0. 22.55
0. 2.10 0.55 0.16
0.05 0.02 0.01 0.
0. )
BODY801_NUT_PREC_PM = ( 0. 0. 0. 0.
0. 0. 0. 22.25
0. 6.73 2.05 0.74
0.28 0.11 0.05 0.02
0.01 )
\begintext
Nereid
Old values:
Values are from the 1988 IAU report. Note that this
rotation model pre-dated the 1989 Voyager 2 Neptune
encounter.
body802_pole_ra = ( 273.48 0. 0. )
body802_pole_dec = ( 67.22 0. 0. )
body802_pm = ( 237.22 0.9996465 0. )
body802_long_axis = ( 0. )
The report seems to have a typo: in the nut_prec_ra expression,
where the report gives -0.51 sin 3N3, we use -0.51 3N2.
body802_nut_prec_ra = ( 0. -17.81
0. 0. 0. 0.
0. 0. 0.
2.56 -0.51 0.11 -0.03 )
body802_nut_prec_dec = ( 0. -6.67
0. 0. 0. 0.
0. 0. 0.
0.47 -0.07 0.01 )
body802_nut_prec_pm = ( 0. 16.48
0. 0. 0. 0.
0. 0. 0.
-2.57 0.51 -0.11 0.02 )
Current values:
The 2000 report [2] states that values for Nereid are not
given because Nereid is not in synchronous rotation with Neptune
(note (j), p.99).
Naiad
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY803_POLE_RA = ( 299.36 0. 0. )
BODY803_POLE_DEC = ( 43.36 0. 0. )
BODY803_PM = ( 254.06 +1222.8441209 0. )
BODY803_LONG_AXIS = ( 0. )
BODY803_NUT_PREC_RA = ( 0.70 -6.49 0. 0.
0. 0. 0. 0.
0.25 0. 0. 0.
0. 0. 0. 0.
0. )
BODY803_NUT_PREC_DEC = ( -0.51 -4.75 0. 0.
0. 0. 0. 0.
0.09 0. 0. 0.
0. 0. 0. 0.
0. )
BODY803_NUT_PREC_PM = ( -0.48 4.40 0. 0.
0. 0. 0. 0.
-0.27 0. 0. 0.
0. 0. 0. 0.
0. )
\begintext
Thalassa
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY804_POLE_RA = ( 299.36 0. 0. )
BODY804_POLE_DEC = ( 43.45 0. 0. )
BODY804_PM = ( 102.06 1155.7555612 0. )
BODY804_LONG_AXIS = ( 0. )
BODY804_NUT_PREC_RA = ( 0.70 0. -0.28 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY804_NUT_PREC_DEC = ( -0.51 0. -0.21 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY804_NUT_PREC_PM = ( -0.48 0. 0.19 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
\begintext
Despina
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY805_POLE_RA = ( 299.36 0. 0. )
BODY805_POLE_DEC = ( 43.45 0. 0. )
BODY805_PM = ( 306.51 +1075.7341562 0. )
BODY805_LONG_AXIS = ( 0. )
BODY805_NUT_PREC_RA = ( 0.70 0. 0. -0.09
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY805_NUT_PREC_DEC = ( -0.51 0. 0. -0.07
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY805_NUT_PREC_PM = ( -0.49 0. 0. 0.06
0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
\begintext
Galatea
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY806_POLE_RA = ( 299.36 0. 0. )
BODY806_POLE_DEC = ( 43.43 0. 0. )
BODY806_PM = ( 258.09 839.6597686 0. )
BODY806_LONG_AXIS = ( 0. )
BODY806_NUT_PREC_RA = ( 0.70 0. 0. 0.
-0.07 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY806_NUT_PREC_DEC = ( -0.51 0. 0. 0.
-0.05 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY806_NUT_PREC_PM = ( -0.48 0. 0. 0.
0.05 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
\begintext
Larissa
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY807_POLE_RA = ( 299.36 0. 0. )
BODY807_POLE_DEC = ( 43.41 0. 0. )
BODY807_PM = ( 179.41 +649.0534470 0. )
BODY807_LONG_AXIS = ( 0. )
BODY807_NUT_PREC_RA = ( 0.70 0. 0. 0.
0. -0.27 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY807_NUT_PREC_DEC = ( -0.51 0. 0. 0.
0. -0.20 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY807_NUT_PREC_PM = ( -0.48 0. 0. 0.
0. 0.19 0. 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
\begintext
Proteus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY808_POLE_RA = ( 299.27 0. 0. )
BODY808_POLE_DEC = ( 42.91 0. 0. )
BODY808_PM = ( 93.38 +320.7654228 0. )
BODY808_LONG_AXIS = ( 0. )
BODY808_NUT_PREC_RA = ( 0.70 0. 0. 0.
0. 0. -0.05 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY808_NUT_PREC_DEC = ( -0.51 0. 0. 0.
0. 0. -0.04 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
BODY808_NUT_PREC_PM = ( -0.48 0. 0. 0.
0. 0. 0.04 0.
0. 0. 0. 0.
0. 0. 0. 0.
0. )
\begintext
Satellites of Pluto
Charon
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY901_POLE_RA = ( 313.02 0. 0. )
BODY901_POLE_DEC = ( 9.09 0. 0. )
BODY901_PM = ( 56.77 -56.3623195 0. )
BODY901_LONG_AXIS = ( 0. )
\begintext
Orientation constants for Asteroids Gaspra, Ida, Vesta, and Eros
--------------------------------------------------------
Gaspra
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY9511010_POLE_RA = ( 9.47 0. 0. )
BODY9511010_POLE_DEC = ( 26.70 0. 0. )
BODY9511010_PM = ( 83.67 1226.9114850 0. )
BODY9511010_LONG_AXIS = ( 0. )
\begintext
Ida
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY2431010_POLE_RA = ( 348.76 0. 0. )
BODY2431010_POLE_DEC = ( 87.12 0. 0. )
BODY2431010_PM = ( 265.95 -1864.6280070 0. )
BODY2431010_LONG_AXIS = ( 0. )
\begintext
Vesta
Current values:
\begindata
BODY2000004_POLE_RA = ( 301. 0. 0. )
BODY2000004_POLE_DEC = ( 41. 0. 0. )
BODY2000004_PM = ( 292. 1617.332776 0. )
BODY2000004_LONG_AXIS = ( 0. )
\begintext
Eros
Current values:
\begindata
BODY2000433_POLE_RA = ( 11.35 0. 0. )
BODY2000433_POLE_DEC = ( 17.22 0. 0. )
BODY2000433_PM = ( 326.07 1639.38864745 0. )
BODY2000433_LONG_AXIS = ( 0. )
\begintext
Radii of Sun and Planets
--------------------------------------------------------
Sun
Value for the Sun is from the [7], page K7.
\begindata
BODY10_RADII = ( 696000. 696000. 696000. )
\begintext
Mercury
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY199_RADII = ( 2439.7 2439.7 2439.7 )
\begintext
Venus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY299_RADII = ( 6051.8 6051.8 6051.8 )
\begintext
Earth
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY399_RADII = ( 6378.14 6378.14 6356.75 )
\begintext
Mars
Old values:
body499_radii = ( 3397. 3397. 3375. )
Current values:
The IAU report gives separate values for the north and south
polar radii:
north: 3373.19
south: 3379.21
We use the average of these values as the polar radius for
the triaxial model.
\begindata
BODY499_RADII = ( 3396.19 3396.19 3376.20 )
\begintext
Jupiter
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY599_RADII = ( 71492 71492 66854 )
\begintext
Saturn
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY699_RADII = ( 60268 60268 54364 )
\begintext
Uranus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY799_RADII = ( 25559 25559 24973 )
\begintext
Neptune
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
(Values are for the 1 bar pressure level.)
\begindata
BODY899_RADII = ( 24764 24764 24341 )
\begintext
Pluto
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY999_RADII = ( 1195 1195 1195 )
\begintext
Radii of Satellites
--------------------------------------------------------
Moon
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY301_RADII = ( 1737.4 1737.4 1737.4 )
\begintext
Satellites of Mars
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY401_RADII = ( 13.4 11.2 9.2 )
BODY402_RADII = ( 7.5 6.1 5.2 )
\begintext
Satellites of Jupiter
Old values:
Old values for Io, Europa, Ganymede, Callisto and Amalthea.
These are from the 1997 IAU report.
body501_radii = ( 1826. 1815. 1812. )
body502_radii = ( 1562. 1560. 1559. )
body503_radii = ( 2635. 2633. 2633. )
body504_radii = ( 2409. 2409. 2409. )
body505_radii = ( 131. 73. 67. )
body506_radii = ( 85 85 85 )
body507_radii = ( 40 40 40 )
body508_radii = ( 18 18 18 )
body509_radii = ( 14 14 14 )
body510_radii = ( 12 12 12 )
body511_radii = ( 15 15 15 )
body512_radii = ( 10 10 10 )
body513_radii = ( 5 5 5 )
body514_radii = ( 50 50 50 )
body515_radii = ( 13 10 8 )
body516_radii = ( 20 20 20 )
Current values:
\begindata
BODY501_RADII = ( 1829.4 1819.3 1815.7 )
BODY502_RADII = ( 1564.13 1561.23 1560.93 )
BODY503_RADII = ( 2632.4 2632.29 2632.35 )
BODY504_RADII = ( 2409.4 2409.2 2409.3 )
BODY505_RADII = ( 125 73 64 )
\begintext
Only mean radii are available in the 2000 IAU report for bodies
506-513.
\begindata
BODY506_RADII = ( 85 85 85 )
BODY507_RADII = ( 40 40 40 )
BODY508_RADII = ( 18 18 18 )
BODY509_RADII = ( 14 14 14 )
BODY510_RADII = ( 12 12 12 )
BODY511_RADII = ( 15 15 15 )
BODY512_RADII = ( 10 10 10 )
BODY513_RADII = ( 5 5 5 )
BODY514_RADII = ( 58 49 42 )
BODY515_RADII = ( 10 8 7 )
\begintext
The value for the second radius for body 516 is not given in
2000 IAU report. The values given are:
BODY516_RADII = ( 30 --- 20 )
For use within the SPICE system, we use only the mean radius.
\begindata
BODY516_RADII = ( 21.5 21.5 21.5 )
\begintext
Satellites of Saturn
Old values:
body601_radii = ( 210.3 197.4 192.6 )
body602_radii = ( 256.2 247.3 244.0 )
body603_radii = ( 535.6 528.2 525.8 )
body604_radii = ( 560. 560. 560. )
body605_radii = ( 764. 764. 764. )
body606_radii = ( 2575. 2575. 2575. )
body607_radii = ( 180. 140. 112.5 )
body608_radii = ( 718. 718. 718. )
body609_radii = ( 115. 110. 105. )
body610_radii = ( 97. 95. 77. )
body611_radii = ( 69. 55. 55. )
body612_radii = ( 16 16 16 )
body613_radii = ( 15 12.5 7.5 )
body614_radii = ( 15 8 8 )
body615_radii = ( 18.5 17.2 13.5 )
body616_radii = ( 74 50 34 )
body617_radii = ( 55 44 31 )
body618_radii = ( 10 10 10 )
Current values:
\begindata
BODY601_RADII = ( 209.1 196.2 191.4 )
BODY602_RADII = ( 256.3 247.3 244.6 )
BODY603_RADII = ( 535.6 528.2 525.8 )
BODY604_RADII = ( 560 560 560 )
BODY605_RADII = ( 764 764 764 )
BODY606_RADII = ( 2575 2575 2575 )
BODY607_RADII = ( 164 130 107 )
BODY608_RADII = ( 718 718 718 )
BODY609_RADII = ( 115 110 105 )
BODY610_RADII = ( 97.0 95.0 77.0 )
BODY611_RADII = ( 69.0 55.0 55.0 )
\begintext
Only the first equatorial radius for Helene (body 612) is given in the
2000 IAU report:
BODY612_RADII = ( 17.5 --- --- )
The mean radius is 16km; we use this radius for all three axes, as
we do for the satellites for which only the mean radius is available.
\begindata
BODY612_RADII = ( 16 16 16 )
BODY613_RADII = ( 15 12.5 7.5 )
BODY614_RADII = ( 15.0 8.0 8.0 )
BODY615_RADII = ( 18.5 17.2 13.5 )
BODY616_RADII = ( 74.0 50.0 34.0 )
BODY617_RADII = ( 55.0 44.0 31.0 )
\begintext
For Pan, only a mean radius is given in the 2000 report.
\begindata
BODY618_RADII = ( 10 10 10 )
\begintext
Satellites of Uranus
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY701_RADII = ( 581.1 577.9 577.7 )
BODY702_RADII = ( 584.7 584.7 584.7 )
BODY703_RADII = ( 788.9 788.9 788.9 )
BODY704_RADII = ( 761.4 761.4 761.4 )
BODY705_RADII = ( 240.4 234.2 232.9 )
\begintext
The 2000 report gives only mean radii for satellites 706--715.
\begindata
BODY706_RADII = ( 13 13 13 )
BODY707_RADII = ( 15 15 15 )
BODY708_RADII = ( 21 21 21 )
BODY709_RADII = ( 31 31 31 )
BODY710_RADII = ( 27 27 27 )
BODY711_RADII = ( 42 42 42 )
BODY712_RADII = ( 54 54 54 )
BODY713_RADII = ( 27 27 27 )
BODY714_RADII = ( 33 33 33 )
BODY715_RADII = ( 77 77 77 )
\begintext
Satellites of Neptune
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
The 2000 report gives mean radii only for bodies 801-806.
\begindata
BODY801_RADII = ( 1352.6 1352.6 1352.6 )
BODY802_RADII = ( 170 170 170 )
BODY803_RADII = ( 29 29 29 )
BODY804_RADII = ( 40 40 40 )
BODY805_RADII = ( 74 74 74 )
BODY806_RADII = ( 79 79 79 )
\begintext
The second equatorial radius for Larissa is not given in the 2000
report. The available values are:
BODY807_RADII = ( 104 --- 89 )
For use within the SPICE system, we use only the mean radius.
\begindata
BODY807_RADII = ( 96 96 96 )
BODY808_RADII = ( 218 208 201 )
\begintext
Satellites of Pluto
Old values:
Values are unchanged in the 2000 IAU report.
Current values:
\begindata
BODY901_RADII = ( 593 593 593 )
\begintext
Radii of Selected Asteroids
--------------------------------------------------------
Gaspra
Current values:
\begindata
BODY9511010_RADII = ( 9.1 5.2 4.4 )
\begintext
Ida
Current values:
\begindata
BODY2431010_RADII = ( 26.8 12.0 7.6 )
\begintext
Kleopatra
Current values:
\begindata
BODY2000216_RADII = ( 108.5 47 40.5 )
\begintext
Eros
Current values:
\begindata
BODY2000433_RADII = ( 7.311 7.311 7.311 )
\begintext
===========================================================================
End of file pck00008.tpc
===========================================================================